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Abstract 
This paper concerns the analysis of experimental data, verifying the applicability of signal analysis 

techniques for condition monitoring of a packaging machine. In particular, the activity focuses on the cutting 
process that divides a continuous flow of packaging paper into single packages. The cutting process is made 
by a steel knife driven by a hydraulic system. Actually, the knives are frequently substituted, causing frequent 
stops of the machine and consequent lost production costs. The aim of this paper is to develop a diagnostic 
procedure to assess the wearing condition of blades, reducing the stops for maintenance. The packaging 
machine was provided with pressure sensor that monitors the hydraulic system driving the blade. Processing 
the pressure data comprises three main steps: the selection of scalar quantities that could be indicative of the 
condition of the knife. A clustering analysis was used to set up a threshold between unfaulted and faulted 
knives. Finally, a Support Vector Machine (SVM) model was applied to classify the technical condition of 
knife during its lifetime. 
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1. INTRODUCTION 
 

Diagnosis is an important activity which is 
gaining its value in industrial strategy planning. The 
supposed possibility of monitoring the technical 
condition of a complete, although complex, 
manufacturing line, would enable to reduce the 
manufacturing costs. In fact, diagnostics allows to 
plan the replacement of specific machinery's 
components to avoid sudden and unexpected 
downtime. It can suggest replacement of the parts 
only if the component is really damaged, reducing 
the maintenance costs [9, 15]. There are three main 
maintenance strategies in literature [17]: the run-to-
break, the time-based preventive maintenance and 
the condition-based maintenance (CBM). In the 
first strategy, the machines run until they break 
down and it is suggested only when components are 
not critical and could be replaced easily and 
cheaply. The preventive maintenance is done at 
regular intervals which are shorter than the 
expected time between failures. Most industries use 
this strategy to avoid production downtime. The 
CBM is the most challenging, since it predicts the 
failure of the component through regular 
monitoring of specific parameters. Among the 
others, vibration analysis is probably the most used 
technique for obtaining information about internal 
conditions of the machine [17], as proved by the 
extensive literature available [11]. Unfortunately, 
the use of vibration signal is not always possible 

and the CBM must encompass other type of input 
sensors. The lack of a specific literature can be 
tackled by the use of more general methodologies 
[27], e.g. expert systems (like Support Vector 
Machines [25]) or clustering techniques (e.g. [6, 
8]). 

Literature is filled with with applications of 
expert systems to complex systems. For example, 
Popiolek and Pawlik [16] proposed the diagnosing 
of planetary gearbox using the artificial neural 
network. Hadroug et alt. [5] implemented an 
adaptive hybrid neuro fuzzy inference network to 
ensure the fault detection in a gas turbine which is 
presenting a complex system. Marciniak [13] 
presented the detection of anomalies in controlling 
the combustion process by using a genetic 
algorithm. Tabaszewski [24] proposed an 
optimization of a nearest neighbours classifier for 
diagnosis of condition of rolling bearings, while 
Straczkiewicz [22] compared supervised and 
unsupervised learning process in damage 
classification of rolling element bearings. Cempel 
and Tabaszewski [1] successfully forecasted 
machine condition by means of the grey system 
theory and first order grey model GM(1,1), starting 
from the observation of one symptom only. In an 
interesting paper, Szczurek at alt. [23] determined 
the influence of room occupancy on indoor air 
quality, on the basis of CO2 concentration 
measurements, as time series, and statistical 
analysis. The authors examined the similarity 
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between segments of the time series and the pattern 
of CO2 variability, which represented a selected 
occupancy profile. The analysis was performed in 
time domain using moving time window technique. 
The similarity was judged based on two types of 
indexes, namely correlation coefficients and 
distance measures. Regarding the use of pressure 
sensor for diagnostics of mechanical systems, 
Sobolewski and Ostapkowicz [20] used flow and 
pressure data from a SCADA to detect leak in 
pipelines by means of statistical analysis. Klarecki 
et alt. [12] measured the pressure pulsation of the 
gear pump with external gear design and correlated 
the experimental data to the working condition of 
the pump. Soylemezoglu at alt. [21] made data 
fusion of vibration, pressure, temperature, and flow 
sensors and proposed a Mahalanobis Taguchi 
System of a hydraulic water pump for the aim of 
fault detection and prognostics. Ding at alt. [3] 
proposed a fault diagnosis method for sensor fault 
based on ensemble empirical mode decomposition 
(EEMD) energy entropy and optimized structural 
parameters least squares support vector machine 
(LSSVM), and proved it on a pressure sensor data. 
Gajek [4] investigated the influence of different 
parameters (the vehicle mass, temperature of 
brakes, aerodynamic drag, etc…) on the efficiency 
of brakes in cars equipped with pressure sensor. 
Jiao et alt. [10] proposed a fault diagnosis model 
based on empirical mode decomposition and 
probabilistic neural networks for an airborne fuel 
pump. In particular the authors declare a 100% fault 
diagnosis by means of only one pressure sensor. 

In this paper those methodologies are applied to 
diagnose a specific component in a packaging 
machine. Among several functions, the focus of the 
paper is on the cutting process that divides a 
continuous flow of packaging paper into single 
packages. The cutting process is made by a steel 
blade driven by a hydraulic system, in particular 
two small cylinder which pulled the knife outside 
its frame, allowing to cut the package. At the end of 
the cutting the pressure is reduced and the knife 
goes back in its frame thanks to a spring placed on 
the bottom part of the knife. The cutting process is 
driven by a PLC without any kind of closed loop 
control. This working condition requires a sharp 
blade, otherwise it will cause a rip of the paper 
instead of a clear cut. The packaging machine was 
provided with pressure sensor that monitors the 
hydraulic system driving the blade. 

The paper is structured as follows: Section 2 
briefly describes the expected pressure signal in the 
working conditions. Section 3 details the scalar 
parameters describing the working conditions of the 
knives. Sections 4 and 5 describe and show results 
of the proposed methodology. Conclusions are at 
the end of the paper. 

 

2. EXPERIMENTAL SETUP 
 

A pressure sensor was chosen and inserted in 
the hydraulic system driving the knife. The setup is 
free from moving cables and could be mounted on 
the machine without drawbacks regarding the 
working conditions. 

The data acquisition is done with a PCB 
pressure sensor. Preview tests were done to assess 
the differences in the pressure signal with or 
without the presence of the paper material. Results 
are shown in Fig. 1, but without the y-axis values 
due to an NDA with the customer. 

 
Fig. 1. Pressure signal difference: with paper 

(red) and without paper (blue) 
 

As shown in Fig. 1 we can divide the knife's 
cycle into four parts: 
• No Pressure [0-12 ms]: The valve is just 

opened and the pressure is near to 0 bar, 
because the oil from the pump has not 
encountered any obstacle yet. 

• Over-Pressure [12-37 ms]: For both signals 
(with and without paper) the pressure starts to 
increase due to the resistance in the hydraulic 
circuit. It is important to see that in this step 
two signals are different. 

• Under-Pressure [37-60 ms]: The brake of 
paper seems to reduce the pressure signal to a 
lower value than the case without it. Probably 
there is a return of elastic energy due to the 
first deformation of the paper. 

• Final pressure [60-80 ms]: In this last step 
both signals are equal, because pressure values 
are only defined by the spring action that is 
the same for both cases. 

The effect of the cutting is shown by the 
oscillation of pressure signal at the middle of the 
cycle, thus the step 2 and 3 can be a good reference 
to monitoring the knives' damage. 
• Typical pressure signal is characterized by: 
• sampling frequency (Fs=20 kHz), 
• acquisition time (T=0.13 seconds), 
• number of samples (N=2600 points). 

The acquisition system starts to acquire when 
the PLC sends an acknowledgement to the valve 
and stops acquiring after 0.13 seconds. 

According to the maintenance policy, the 
customer company has to keep the historical list of 
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all technical operations, like the substitution of a 
faulted knife. The list reports the code of the 
repaired machine, the date of substitution, the name 
of the customer, the number of knives replaced and 
the total machine working hours. 

The list allows identifying complete lives of the 
knives, and separate the corresponding data from 
the historical. It must be noted that an operator 
updates the list manually. It cannot be excluded that 
it happens rarely that some knives' changes are not 
logged. Moreover, the choice of the replacing time 
is based only on the opinion of the single 
technician, who looks at the production, by visual 
inspection, and decides that the knives are damaged 
and have to be replaced. Finally, both knives are 
often replaced at the same time to avoid the second 
stop of a production to substitute the other knife. 
Therefore, a complete life of the knife is not the 
same as a complete uptime of the knife, which can 
be replaced even if it is still working well. 

 
3. DATA ANALYSIS 

 
Figures 2 and 3 show a comparison between the 

pressure data for a knife at an early (just replaced) 
and late stage (just before the replacement), in time 
and frequency domain respectively. Since no 
previous analysis was available, the choice of the 
physical parameters for data analysis is arbitrary, 
either in the type or in the number. In a preliminary 
stage, several parameters could be suggested, based 
on the experience of the authors or the expected 
descriptors of data distribution in physical 
phenomena (e.g. mean value, standard deviation, 
skewness, etc…). Afterwards, the number of these 
parameters will be reduced, according to some rules 
that will be defined later in the paper.  

The choice of preliminary dataset is done on 
two different domains: time domain and frequency 
domain. 

 
Fig. 2. Comparison between the pressure profile in time 
domain, measured at an early (blue) and late (red) stage 

 
Fig. 3. Comparison between the pressure profile in 

frequency domain, measured at an early (blue) and late 
(red) stage 

 
3.1. Time domain parameters 

The pressure signal in Figure 1 was originally 
described with 16 scalar parameters, such as the 
maxima, the kurtosis values, the main percentiles, 
etc... A preliminary analysis was done by means of 
the Pearson product-moment correlation 
coefficients [26], as a measure of the degree of 
linear dependence between two variables. 
Parameters with high Pearson coefficient were 
removed since the information carried was linearly 
dependent.  

Only two parameters have been considered at 
last: 
1. The third quartile of all sampled points (Q3), 

which trend over time is shown in Figure 4.  
2. The time interval between the start of 

acquisition and the maxima of the derivative 
of pressure signal when it is going to achieve 
the maximum (It_der_max). The trend is 
shown in Figure 5. 

The third quartile is a measure of the data 
dispersion in a single acquisition. As soon as the 
cutting edge of the knife is not sharp, the pressure 
in the circuit increases during the cutting profile, as 
shown in Figure 4. Another consequence is a small 
delay in the cutting time, which is measured by the 
feature It_der_max and shown in Figure 5. 

With reference to Figures 4-6, there are clear 
falls in the signal at different intervals, highlighted 
with black arrows. The falls almost correspond to 
the data of knife’s replacement by the maintenance 
service. Sometimes the falls are related to specific 
value of the signal only (like outliers). The length 
between falls is not meaningful since the 
acquisition schedule had not constant timing. 
Similar behaviour will be present in the trend of 
other features. Clear falls are also evident in Fig.7, 
but there are no arrows not to hinder the readability. 

Another data processing technique which is 
used is the Empirical Mode Decomposition (EMD). 
It is a procedure to decompose a signal into a series 
of components with specific characteristics. The 
mathematical background could be found in [7]. 
These components are called Intrinsic Mode 



DIAGNOSTYKA, Vol. 18, No. 3 (2017)  
LAHRACHE A, COCCONCELLI M, RUBINI R. Anomaly detection in a cutting tool by K-means clustering… 

 

24

Functions (IMFs). The sum of all these components 
is equal to the original signal, i.e. it works in time-
domain as a decomposition. It was developed to 
study non-stationary signals and the extracted 
components have a frequency content decreasing 
from the first one to the last [18]. 

Since we are interested into high frequency 
components rather than lower ones, the first two 
IMF are considered and added together. The main 
advantage of the EMD is that resulting IMFs have a 
zero-mean value which makes it easier to identify 
the local minima/maxima. 

In particular, the phase of the second minima, 
labeled It_min_imf, has been taken as a third 
parameter in time domain. The trend of the 
It_min_imf over time is shown in Figure 6. The 
feature It_min_imf gives information similar to the 
It_der_max, since it is related to the delay in the 
cutting time due to the faulted edge of the knife. 
Compared the It_der_max, the It_min_imf works on 
the IMF output that acts like a high-pass filter on 
the pressure signal. 

 

 
Fig. 4. Trend of the third quartile (Q3) over time 

 

 
Fig. 5. Trend of the It_der_max parameter over time 

 

 
Fig. 6. Trend of the It_min_imf over time 

 
3.2. Frequency domain parameters 

Since the cutting process induces hammer`s 
effects in the oil pressure, with visible harmonics, 
the choice of some physical parameters from the 
frequency domain seems promising. 

All the spectra of the available signals were 
taken into account in the preliminary study. 
Subsequently the spectra components were reduced 
to the first 20 harmonics of cyclic frequency, i.e. 
the frequency of the cutting process. Finally, the 
comparison of the trend of the amplitudes of these 
harmonics, with reference to different lives of the 
knife, leads to identify just 4 components: 
1. A3: amplitude of the 3rd spectrum component, 
2. A4: amplitude of the 4th spectrum component, 
3. A5: amplitude of the 5th spectrum component, 
4. A6: amplitude of the 6th spectrum component. 

Figure 5 shows the trend of the amplitude 
harmonics. The number of selected harmonics 
points to phenomena that repeat from 3 to 6 times 
in the cutting time. Probably they are related to 
oscillations of the knife due to the release after the 
cutting. 

A list of dates of the knives' replacement was 
available. The trend of the physical parameters over 
time was compared with that list in order to assess 
the sensitivity of the parameters. An example is 
given in Fig. 4, where the dates of knives' 
replacement overlay the signal. Figures 4–7 show 
the trend of the third quartile, the It_der_max 
parameter, the It_min_imf parameter, and the third 
to sixth harmonics respectively. The trend of these 
parameters clearly highlights discontinuity 
corresponding to a precise time instant (the 
replacement of the knife). The trend could be 
different, e.g. the A3 parameter has a higher value 
after the replacement that decreases during the 
lifetime of the knives, while the A5 parameter has 
the opposite behaviour. It must be noticed that the 
behaviour of the parameters is not relevant by itself, 
the key point is that the trend must have a 
discontinuity before and after the replacement, 
since it means that the parameter is sensitive to the 
technical condition of the knife. Indeed, the 
logarithmic behaviour of all the data in figures 4–7 
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makes it difficult to assess the deterioration of the 
knife over time, since the trend tends to be flat as 
the wear increases. An ideal behaviour would be 
the exponential one, increasing the output value 
over time, but unfortunately none of the tested 
parameters demonstrated that trend. 

 
Fig. 7. Trend of the amplitude of the third to sixth 

harmonics 
 

4. CLUSTERING ANALYSIS 
 
Clustering analysis classifies a set of data in 

terms of similarity among the elements of the 
dataset. A vector of seven components, the physical 
parameters identified in the previous section, 
substitutes each element of the dataset.  

Clustering analysis should highlight if the 
ensemble of the chosen parameters changes 
according to the life of the knife. 

The data available for this analysis was divided 
into four datasets, covering the period from July 
2014 to February 2015. The resulting complete 
lives of the knives collected are 16. A complete life 
is given by the data when the technical engineer 
substituted the knife in the ordinary maintenance. 

The clustering techniques have been used in this 
paper in order to compare the results: the K-means 
clustering and the hierarchical clustering. 

 
4.1. K-means clustering 

The K-means algorithm distributes data into K 
clusters, minimizing the variance inside each 
cluster. The K-means algorithm used requires as 
input the number of clusters (N), the metrics to 
measure the similarity among data elements 
(Distance), the input matrix (X) each column lists 
the dataset for all the observations. 

The output of the cluster has two elements: the 
cluster's number for each observation (Idx), i.e. the 
labelling of data into a specific cluster; a vector 
giving an information (a number between -1 and 
+1) about the quality of the clustering for each data 
(Silhouette) [19]. 

The standard Euclidean distance is used as 
metrics and the number of clusters is chosen to be 
10 (N = 10). Result for one of the chosen input 
parameters (It_der_max) is shown in Figure 8. The 
ten clusters gradually change one each other from 

the beginning of the life (left part of the figure) to 
the end (right part of the picture). The clustering 
could recognize the technical condition of the knife 
and could assign a proper label to it.  

In particular, the clusters bounded with a 
new/good knife are in red colour, while the cluster 
bounded to old knife is in green (cluster 1), yellow 
and violet (clusters 8-10). The x points are the 
centroids of each cluster. 

It seems that the progression of the wear of the 
knives is fast at the beginning and then decreases. 
This behaviour is in accordance with the trends of 
physical parameters (logarithmic trend). 

 
Fig. 8. K-means clustering of the It_der_max 

values with N = 10 
 

4.2. Hierarchical clustering 
The hierarchical clustering is similar to the K-

means but it gives quantitative information about 
how close the clusters are to each other. In 
particular, the hierarchical cluster returns a 
dendrogram, which is a hierarchical tree and the 
branches are placed in different positions depending 
on similarity between the clusters. 

Hierarchical clustering algorithm needs as input 
the number of clusters (N), the metrics to measure 
the similarity among data elements (Distance), the 
input matrix (X) each column lists the dataset for 
all the observations and the method of linkage to 
connect different observations (Linkage). 

The output of the cluster has two elements: the 
cluster's number for each observation (Idx), i.e. the 
labelling of data into a specific cluster; the 
cophenetic coefficient (c), that is similar to 
silhouette in the K-means algorithm, i.e. it is a 
number between 0 and 1 giving an information 
about the quality of the clustering. 

In this paper, the standard Matlab’s functions of 
the Statistics and Machine Learning Toolbox have 
been used. In particular the distance chosen is the 
Euclidean metric and the linkage type is called 
complete linkage or farthest neighbour clustering. 
The linkage method joins together clusters based on 
the maximum distance between their elements.  

For clarity, figure 9 shows, the output of the 
hierarchical classification of the knives into 10 
clusters. Figure 10 shows the corresponding 
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dendrogram. Results are similar to the k-means 
method. 

Note: the colours of the map in the k-means and 
hierarchical clustering are not related to each other, 
it is just a graphical representation of the software. 

Dendrogram shows that three clusters are close 
to each other (linking to the technical condition of 
the knife), while clusters 6, 7 and 9 are similar to 
each other but different from the others (linking to a 
faulted condition of the knife). 

The final number of clusters has been chosen by 
trial and error approach. A small number of clusters 
may not provide the sufficient discrimination 
among different knife’s conditions, while a large 
number makes the clustering classification not so 
robust. 

In the next section the hierarchical clustering of 
the data into 10 clusters will be compared with the 
results of the k-means algorithm (with N=10) as 
defined in section 4.1. 

 
Fig. 9. Hierarchical clustering of the 

It_der_max values with N = 10 
 

 
Fig. 10. Dendrogram in the hierarchical 

clustering 
 
5. CLASSIFICATION BY SVM 

 
The Support Vector Machines (SVM) belong to 

the algorithms of machine learning. In particular, 
they are a class of supervised algorithms, which 
means it requires a training step where both 
unfaulty and faulty cases are needed. Supervised 

machine learning tools are very useful when a lot of 
historical data are available for training, and a 
physical and detailed model of the system is not 
necessary. 

In this paper, the aim of SVM is to assess the 
faulted knife. Among 16 lives of knives available 
for training and test, 11 lives are used in the 
training part, the remaining 5 lives are applied in 
the test. The test data are not used in any step of the 
SVM computation, in order to not bias the results. 
The ratio between training and test data is the 
consequence of the limited number of available 
trials. In this work, 2/3 of data is used for the 
training step due to uncertainties on the real 
technical condition of the knife at the end of useful 
life. A discriminant analysis on SVM training data 
has been done, in order to avoid biased results due 
to the specific data used for training [26]. 

Support vector machines try to define a 
separation plane (or hyper-plane) between two 
groups. The exact dimension of this plane depends 
on the dimension of the input array [2]. As 
described in the previous sections, the array used is 
made of 7 scalar values, i.e. the separation surface 
becomes a 7-dimension hyper-plane. Support vector 
machines are able to separate two groups at a time, 
while the clustering techniques classified data into 
10 different clusters in the previous section 4. As a 
consequence, data reduction is necessary before 
using the SVM and could be done using the results 
of clustering algorithms. The ten clusters resulting 
from the previous step are divided into two classes 
only: the first 6 clusters are labelled as healthy, 
while the remaining 4 are labelled as faulted. The 
initial clustering into 10 clusters gives the customer 
a larger degree of freedom, which is the possibility 
to move the threshold according to experimental 
results. Flowchart of the data processing is given in 
Fig. 11. 

 
Fig. 11. Flowchart of the data processing. 
Flow data of the training step on the left, 

testing on the right 
 
Two types of SVM were developed, according 

to the previous clustering methods: 
1. SVM with k-means clustering; 
2. SVM with hierarchical clustering. 
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5.1. SVM with k-means clustering 
The k-means clustering is applied on the 

averaged cutting cycle over a single acquisition. 
Data are reduced and the physical parameters are 
not so sensitive to transitory effects. 

Figure 8 shows the classification of data before 
this clustering reduction, while Figure 12 shows the 
final classification into two classes only for one of 
the input parameter (It_der_max). 

Figure 13 compares the classification of the 
SVM for test data with the classification provided 
by K-means clustering. The percentage of success 
for the SVM equals 99.34%. It must be noted that 
test data are not taken into account during the 
training phase. 

 
Fig. 12. Classification between unfaulted and 

faulted knives 

 
Fig. 13. Difference between predicted and 

observed outputs with k-means 
 
5.2. SVM with hierarchical clustering 

The same process to determine the SVM model 
is repeated, considering the hierarchical clustering 
instead of the k-means method. 

Figure 14 shows the data classification 
corresponding to the dendrogram shown in Fig. 10. 

Unlike the K-means method, the cluster 
reduction of data into two main classes (unfaulted 
and faulted knives) is straightforward, since the 
dendrogram itself suggests which clusters should be 
jointed together (see Fig. 10). It is worth 
mentioning that the clustering into 10 clusters 
reminds a cophenetic coefficient of 0.71, while 

usually a good classification has a cophenetic 
coefficient greater than or equal to 0.8. In fact, the 
cophenetic coefficient value increases with the 
decrease of the observations. 

Figure 14 shows the prediction of knives 
technical condition for test data. Unlike the case 
with K-means the hierarchical clustering gives a 
late classification of faulted knives, just in the very 
last instants before the supplier replaced them. As a 
consequence, the K-means method seems more 
conservatives, since it suggests the knife 
replacement earlier than the hierarchical method. 

Comparing Fig. 13 with Fig. 14 it seems that the 
hierarchical methods allocate too few data in the 
faulted cluster. Probably the calculation of the SVM 
with a larger set of data for training could improve 
the hierarchical approach. 

 
6. SUMMARY 

This section summarizes the results of the 
paper. The aim of the paper was proposing a 
condition monitoring algorithm to assess the 
wearing condition of a cutting tool. The analysis 
has been done on pressure data in the hydraulic 
system that drives the knife. The main steps and 
results are collected in the following list: 
• Based on available experimental data, an 

initial set of features on both time and 
frequency domain has been selected. 

• The list of features has been reduced by means 
of Pearson’s correlation coefficients, that 
measures how close to each other were the 
information provided by features. 

• A final set of 7 features has been selected. 
Namely Q3, It_der_max, It_min_imf, A3, A4, 
A5, A6. Chapter 3 of the paper details the 
chosen features. 

• Three of the selected features are given in 
time-domain, while four are given in 
frequency-domain. 

• The real wear condition of the knives at the 
time of replacement were not known. Then a 
clustering step was used to assess the status of 
the knives in each data set. 

• Two type of clustering techniques were tested: 
the K-means and the Hierarchical clustering. 

• Both methods recognize differences in feature 
array from early to aged knives. 

• The output clusters are divided in two classes: 
unfaulted and faulted knives. The threshold is 
arbitrarily chosen among the K-means 
clusters, while it is straightforward from the 
dendrogram in the Hierarchical clustering. 

• Support Vector Machine is trained based on 
the two classes of the previous step.  

• The SVM based on K-means recognizes a 
fault knife earlier than the replacement time. 
Nevertheless, it could be used by the company 
for supplying the new knife and scheduling 
the maintenance. 
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• The SVM based on Hierarchical clustering 
gives a late classification of faulted knives, 
just in the very last instants before 
replacement by the supplier. 

Based on the results the K-means based SVM is 
suggested for the condition monitoring of the 
wearing condition of knives. The main advantage is 
the arbitrarily choice of the threshold used in data 
reduction step before the SVM. It is a degree of 
freedom that the user could change to adapt the 
procedure to different situations, like changes in 
environmental conditions. It must be noted that the 
clustering itself could make the classification of 
faulted knife, without any further step. The 
introduction of SVM is proposed to ease the 
condition monitoring on field. Indeed, the 
clustering techniques need all the historical data in 
order to calculate distances and classify data. In this 
paper, the SVM is computed and validated once 
then could be used alone, without any need of 
historical data. 

 
7. CONCLUSIONS 

 
This paper details a condition monitoring 

procedure to assess the technical condition of a 
cutting blade. The knife is driven by a hydraulic 
circuit whose pressure is measured by the 
acquisition system. The methodology involves the 
use of both clustering and Support Vector 
Machines. Pre-processing of data is necessary to 
reduce the number of scalar quantities used to 
describe the status of the system. In particular, the 
Pearson product-moment correlation coefficient is 
used to measure the degree of linear dependence 
between two variables. The clustering of the 
remaining quantities allows to identify the most 
significant thresholds to distinguish a class from the 
other. Finally, availability of acquired data makes 
advisable to use supervised expert systems like 
SVM to classify the incoming signal. A rate of 99% 
of success in the testing makes the proposed 
methodology promising. It is worth noting that the 
clustering step is made necessary by the 
uncertainties on the real status of the knife at the 
date of replacement. Try to link together 
uncertainties, condition monitoring and pattern 
recognition will be the focus of future researches.  
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Fig. 14. Difference between predicted and 

observed outputs with hierarchical clustering 
(1: faulted knife in red; 2: unfaulted knife in 

green) 
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